Model-based conformance test generation for timed systems

Thierry JÉRON
Joint work with Nathalie Bertrand, Amélie Stainer, Moez Krichen

INRIA Rennes - Bretagne Atlantique, France
Thierry.Jeron@inria.fr
http://www.irisa.fr/prive/jeron/

August, 2015
Conformance testing of reactive systems

Checking that a black-box implementation (IUT) of a reactive system behaves correctly wrt. its specification S, through test experiments.

- **black box**: unknown code, but known interfaces
- the specification is the reference (oracle)

Application domains

Embedded systems in automotive, aerospace, medical devices, etc
Telecommunication systems, Information systems, Web services, etc
Why (and how) formalizing conformance testing?

Industrial practice:
manual design of test suites from informal specifications
⇒ high cost, low quality, difficult maintenance, ...

⇒ automatization of test synthesis from formal specifications can be profit earning

→ **formalizing testing/test generation:** model-based testing
 - formal models for specifications, test cases, implementations,
 - formalize the conformance relation, test execution, verdicts
 - design test generation algorithms
 - ensure properties of test cases
Model-based test generation from timed systems

Motivations

- Testing reactive systems with **timing constraints**

 e.g. real-time systems.

Timed Automata (TA) [AD94]

- A standard model for RT systems
- Well studied theory

 (e.g. reachability pb decidable using Region/Zone Automata)
- Verification tools: UPPAAL, Chronos, IF...

Conformance theory for TAs

- TA model adapted for testing: TAIO
- Conformance relation: `tioco` [KT09] / `rtioco` [LMN04]

 Extends `ioco` for untimed models (IOLTS) to TAIOs
Challenges for MBT with tioco

Determinization
may be necessary to foresee allowed actions after observable traces.
but not all TAs can be determinized

→ Two approaches to test generation:
 ▶ On-line testing (e.g. UPPAAL-TRON): test gen. during execution;
 Allowed actions after one trace: no determinization.
 ▶ Off-line testing: separate test generation and test execution;
 Most often restricted to deterministic/determinizable classes of TAs.
 Exception: [KT09] based on approximate determinization.

Test selection
not all behaviours can be tested (infinite runs/dense time),
thus it is necessary to select some finite behaviors to test.
Different approaches: random, coverage criteria, test purposes.
Our approach

Off-line test generation from TAIOs in the *tioco* testing theory

- **General model** of non-deterministic TAIOs:
 - input/output/internal actions, invariants (urgency)

- **Off-line** test case generation [BJSK11, BJSK12]
 - Approximate determinization of TAIOs [BSJK11, BSJK15].
 - Selection by expressive test purposes,
 - using symbolic reachability analysis,
 - producing TAIOs test cases.
Outline

1. Timed Automata with inputs and outputs (TAIOs)
2. The tioco testing theory
3. Off-line test case selection
1 Timed Automata with inputs and outputs (TAIOs)

2 The tioco testing theory

3 Off-line test case selection
Timed automata with inputs and outputs (TAIOs)

Automata + clocks + inputs /outputs/internal to describe testing artifacts (specif., implem., test cases), extended for test purposes.

TAIO $\mathcal{A} = (L, \ell_0, \Sigma?, \Sigma!, \Sigma\tau, X, M, I, E)$.

Guard/invariant: conj. of $x \sim c$, $c \in [0, M] \cap \mathbb{N}$, $\sim \in \{<, \leq, =, \geq, >\}$

Resources $(X, M) = (\{x\}, 2)$, \rightarrow region abstraction, determinization
Semantics of TAIOs: Runs, Traces

- **state** = (location, valuation of X),

- **Runs**: from state to state by discrete trans./time elapse

 \[\rho_1 = (\ell_0, 0) \xrightarrow{1} (\ell_0, 1) \xrightarrow{\text{x=1, } \tau} (\ell_1, 1) \xrightarrow{5} (\ell_1, 1.5) \xrightarrow{1<x<2, a?, \{x\}} (\ell_2, 0) \]

 \[\rho_2 = (\ell_0, 0) \xrightarrow{1} (\ell_0, 1) \xrightarrow{\text{x=1, } \tau, \{x\}} (\ell_5, 0) \xrightarrow{5} (\ell_5, 5) \xrightarrow{\text{x<1, a?, \{x\}}} (\ell_6, 0) \]

- **Traces**: \(\sigma_1 = \sigma_2 = (1.5).a? : \) proj. on observ. delays, actions

- **After**: \(\mathcal{A} \text{ after } (1.5).a? = \{(\ell_2, 0), (\ell_6, 0)\} \) (non-determinism)

- **Out**: \(\text{out}(\mathcal{A} \text{ after } (1.5).a?) = \text{out}((\{(\ell_2, 0), (\ell_6, 0)\}) = \{b\} \cup [0, \infty) \)
Some characteristics of TAIOs

A TAIO \mathcal{A} is said

- **deterministic** (DTAIO): no τ action, no intersecting guards in any ℓ
 Ensures that $\forall \sigma \in \text{Traces}(\mathcal{A}), \mathcal{A}$ after σ is a singleton.

- **complete**: in any location, all delays and actions are enabled
 $\forall \ell \in L, (I(\ell) = \text{true} \land \forall a \in \Sigma, \bigvee (\ell, g, a, x', \ell') \in E \ g = \text{true})$

- **input-complete in state** (ℓ, v): ready to receive any input
 $\forall a \in \Sigma^A, (\ell, v) \xrightarrow{a}$.

- **non-blocking**: does not prevent time to progress
 from any reachable state, there is an execution of arbitrary duration.
1 Timed Automata with inputs and outputs (TAIOs)

2 The **tioco** testing theory

3 Off-line test case selection
Conformance testing framework

Specification
\[A \in TAIO \]
\((\ldots, \Sigma^A?, \Sigma^A!, \Sigma^A\tau, X^A, M^A, \ldots)\)

Implementation
\[I \in TAIO \]
input-complete, non-blocking
\((\ldots, \Sigma^I?, \Sigma^I!, \Sigma^I\tau, X^I, M^I, \ldots)\)

Test purpose
\[TP \in OTAIO \]
+ Accept \(\in L^{TP} \)
complete

Test case
\[TC \in DTAIO \]
Verdicts:
- None
- Pass
- Fail
- Inconc
\((\ldots, \Sigma^I!, \Sigma^I?, Y,N,\ldots)\)
input-complete in None

Test Generation
The tioco conformance relation [KT09]

Let \mathcal{A} be a TAIO, and \mathcal{I} an input-complete, non-blocking TAIO, \mathcal{I} tioco \mathcal{A} if after traces of \mathcal{A}, outputs and delays of \mathcal{I} are allowed by \mathcal{A}. Formally, $\forall \sigma \in \text{Traces}(\mathcal{A}), \text{out}(\mathcal{I} \text{ after } \sigma) \subseteq \text{out}(\mathcal{A} \text{ after } \sigma)$.

Alternative def.: $\text{Traces}(\mathcal{I}) \cap [\text{Traces}(\mathcal{A}).(\Sigma_1 \cup \mathbb{R}^+) \setminus \text{Traces}(\mathcal{A})] = \emptyset$.

Diagram:

<table>
<thead>
<tr>
<th>\mathcal{A}</th>
<th>\mathcal{I}_1 tioco \mathcal{A}</th>
<th>$\neg \mathcal{I}_2$ tioco \mathcal{A}</th>
</tr>
</thead>
<tbody>
<tr>
<td>{x}</td>
<td>{x}</td>
<td>{x}</td>
</tr>
<tr>
<td></td>
<td>$?a, {x}$</td>
<td>$?a, {x}$</td>
</tr>
<tr>
<td>$x \leq 8$</td>
<td>$x \leq 5$</td>
<td>$x \leq 5$</td>
</tr>
<tr>
<td></td>
<td>$2 \leq x \leq 8, !b$</td>
<td>$4 \leq x \leq 5, !b$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$1 \leq x \leq 5, !b$</td>
</tr>
</tbody>
</table>

\[
\text{out}(\mathcal{A} \text{ after } ?a.1) = [0, 7] \\
\text{out}(\mathcal{A} \text{ after } ?a.2) = \{b\} \cup [0, 6] \\
\text{out}(\mathcal{I}_2 \text{ after } ?a.1) = \{b, c\} \cup [0, 4] \\
\text{out}(\mathcal{I}_1 \text{ after } ?a.2) = [0, 3] \\
\]
Test purposes

Formalize practice for selecting behaviors of specifications for testing.

A **Test purpose** for A is a pair $(\mathcal{TP}, \text{Accept})$ where

1. $\mathcal{TP} = (L^{TP}, \ell_0^{TP}, \Sigma^A, \Sigma^I, \Sigma^T, X^A, X^{TP}, M^{TP}, I^{TP}, E^{TP})$ is a non-intrusive OTAIO: complete, observing Σ^A and X^A,
 + proper clocks X^{TP} enhancing precision

2. $\text{Accept} \subseteq L^{TP}$: accepting trap locations.
Test cases

Test case for $\mathcal{A} : (\mathcal{T}C, \textbf{Verdicts})$ where

- $\mathcal{T}C = (L^{\mathcal{T}C}, \ell_0^{\mathcal{T}C}, \Sigma_?^{\mathcal{T}C} = \Sigma_?^A, \Sigma_?^{\mathcal{T}C} = \Sigma_?^A, Y, N, I^{\mathcal{T}C}, E^{\mathcal{T}C})$ is a DTAIO
- **Verdicts**: partition of $S^{\mathcal{T}C} = \text{None} \sqcup \text{Pass} \sqcup \text{Fail} \sqcup \text{Inconc}$
- $\mathcal{T}C$ is input-complete in \text{None} states + $\forall \ell$, $I^{\mathcal{T}C}(\ell) = \text{true}$.

Test suite $\mathcal{T}S = \text{set of test cases}$.

```
\begin{align*}
\ell''_0 \quad & 1 < y < 2, a!, \{y\} \\
\ell''_1 \quad & y = 0, b?, \{y\} \\
\ell''_2 \quad & y = 0, b?, \{y\} \\
\ell''_3 \quad & y = 0, b?, \{y\} \\
\ell''_4 \quad & y = 0, b?, \{y\} \\
\text{Accept}_1 \quad & \\
\text{Accept}_2 \quad & \\
\ell_{\text{Fail}} \quad & y \geq 0, b? \\
\end{align*}
```

Pass = $\{\text{Accept}_1, \text{Accept}_2\} \times \mathbb{R}_+$

Inconc = $\{\ell''_0\} \times [2, \infty) \cup \{\ell''_1\} \times (0, \infty) \cup \{\ell''_2\} \times (0, 1]$

Fail = $\{\ell_{\text{Fail}}\} \times \mathbb{R}_+ \cup \{\ell''_3, \ell''_4\} \times (0, \infty) \cup \{\ell''_2\} \times (1, \infty)$
Test execution and verdicts

Test execution

The execution of \(TC \) on \(I \) is modelled by the parallel composition \(I \parallel TC \) where time and (opposite) observable actions synchronize.

Ensures \(\text{Traces}(I \parallel TC) = \text{Traces}(I) \cap \text{Traces}(TC) \).

Failure by a test case

The (possible) failure of an implementation to pass a test is modelled as

\[
I \text{ fails } TC \equiv \text{Traces}(I) \cap \text{Traces(Fail}(TC)) \neq \emptyset
\]

i.e. the execution of \(I \parallel TC \) may lead \(TC \) to a Fail state.

(similar defs of passes for Pass and inconc for Inconc).

Warning: due to non-controlability, the same \(I \) may produce different verdicts for the same test case.
Expected properties of test suites

- **Soundness:** \(\forall I, \forall TC \in TS, I \text{ fails } TC \Rightarrow \neg(I \text{ tioco } A) \)
 only non-conformant implementations can be rejected by a test case

- **Exhaustiveness:** \(\forall I, \neg(I \text{ tioco } A) \Rightarrow \exists TC \in TS, I \text{ fails } TC \)
 all non-conformant implem. may be rejected by some test case

- **Strictness:** \(\forall I, \forall TC \in TS, \neg(I \parallel TC \text{ tioco } A) \Rightarrow I \text{ fails } TC \)
 non-conformant traces traversed during test execution imply rejection

- **Precision:** A test suite \(TS \) for \(A \) and \(TP \) is *precise* if \(\text{Pass} \) verdicts are delivered for traces of runs of \(A \) accepted by \(TP \).
 \[
 \text{Traces}_{\text{Pass}}(TC) = \text{Traces}(\text{Seq}(A) \uparrow^X TP \cap \text{Seq}_{\text{Accept}}^TP(\mathcal{TP}))
 \]
Let A, B be two TAIOs with same input/output alphabets

$A \text{ io-refines } B$ $(B \text{ io-abstracts } A)$ if

$A \preceq B \equiv \begin{cases} \forall \sigma \in \text{Traces}(B), \quad \text{out}(A \text{ after } \sigma) \subseteq \text{out}(B \text{ after } \sigma) \\ \forall \sigma \in \text{Traces}(A), \quad \text{in}(B \text{ after } \sigma) \subseteq \text{in}(A \text{ after } \sigma). \end{cases}$
io-abstraction and \textit{tioco}

Proposition: io-abstraction preserves conformance

If $A \preceq B$ then $\mathcal{I} \text{ tioco } A \Rightarrow \mathcal{I} \text{ tioco } B$.

Proof sketch: when \mathcal{I} input-complete, $\mathcal{I} \text{ tioco } A \iff \mathcal{I} \preceq A$

by transitivity: $\mathcal{I} \text{ tioco } A \land A \preceq B \Rightarrow \mathcal{I} \preceq B \iff \mathcal{I} \text{ tioco } B$

Corollary: io-refinement preserves soundness

If $A \preceq B$ then $\mathcal{T} \mathcal{S}$ sound for $B \Rightarrow \mathcal{T} \mathcal{S}$ sound for A.

Proof sketch: $A \preceq B \Rightarrow (\neg(\mathcal{I} \text{ tioco } B) \Rightarrow \neg(\mathcal{I} \text{ tioco } A))$

$\mathcal{T} \mathcal{S}$ sound for $B = (\forall \mathcal{I}, \mathcal{I} \text{ fails } \mathcal{T} \mathcal{C} \Rightarrow \neg(\mathcal{I} \text{ tioco } B))$

$\Rightarrow (\forall \mathcal{I}, \mathcal{I} \text{ fails } \mathcal{T} \mathcal{C} \Rightarrow \neg(\mathcal{I} \text{ tioco } A)) = \mathcal{T} \mathcal{S}$ sound for A.
1. Timed Automata with inputs and outputs (TAIOs)

2. The tioco testing theory

3. Off-line test case selection
Challenges of test generation

Generating a test suite $\mathcal{T}S$ from a TAIO \mathcal{A}.

- **Selection** of a finite set of $\mathcal{T}C$ by **test purposes** $\mathcal{T}P$:
 → precision gained by an expressive model of $\mathcal{T}P$: OTAIOs

- **Off-line** test generation:
 - **determinization** required to foresee outputs after any trace of \mathcal{A},
 - but TAs cannot be determinized in general
 → approximate determinization adapted to tioco

- **Desired** **properties** of $\mathcal{T}S$:
 → conditions to ensure soundness ?, exhaustiveness ?, strictness ?
Off-line test case selection with test purposes

\[\mathcal{A} \in TAIO \]
\[(L^A, \epsilon_0^A, \Sigma^A_i, \Sigma^A_T, X^A, M^A, I^A, E^A) \]

\[TP \in OTAIO + \text{Accept} \]
\[TP \in LP \]
\[(\ldots, \Sigma^A_i, \Sigma^A_T, X^T_P, M^P, \ldots) \]

\[\mathcal{P} \in TAIO + \text{Accept} \]
\[\mathcal{P} \in LP \]
\[(\ldots, \Sigma^A_i, \Sigma^A_T, X^A \cup X^T_P, M^P, \ldots) \]

\[\mathcal{D}P \in DTAIO + \text{Accept} \]
\[\mathcal{D}P \in LP \]
\[(\ldots, \Sigma^A_i, \Sigma^A_T, Y, N, \ldots) \]

\[TC \in DTAIO \]
\[\text{Verdicts:} s^{TC} = \text{None} \sqcup \text{Pass} \sqcup \text{Fail} \sqcup \text{Inconc} \]
\[(\ldots, \Sigma^A_i, \Sigma^A_T, Y, N, \ldots) \]
Timed Automata with inputs and outputs (TAIOs)

The \textit{tioco} testing theory

Off-line test case selection

\textbf{Product} $\mathcal{P} = \mathcal{A} \times \mathcal{TP}$

Synchronization on actions and observed clocks (conjunction of guards).

\begin{align*}
\mathcal{P} &= \mathcal{A} \times \mathcal{TP} \\
&= \ell_0' \xrightarrow{x \leq 1} \ell_1' \xrightarrow{x = 1, \tau, \{x\}} \ell_2' \xrightarrow{1 < x < 2, a?, \{x\}} \ell_3' \xrightarrow{x = 0, b!} \ell_4' \\
&\xrightarrow{x \leq 1} \ell_6' \xrightarrow{x = 0} \ell_7' \xrightarrow{x \leq 1} \ell_8' \xrightarrow{x = 0} \ell_9' \xrightarrow{\text{Acc}} \Sigma^A
\end{align*}

Non-intrusiveness: $\text{Traces}(\mathcal{P}) = \text{Traces}(\mathcal{A}) \Rightarrow \text{same tioco implementations.}$

Intersection: $\text{Traces}_{\text{Accept}}^\mathcal{P}(\mathcal{P}) = \text{Traces}(\text{Seq}(\mathcal{A}) \uparrow^{X_{\mathcal{TP}}} \cap \text{Seq}_{\text{Accept}}^\mathcal{TP}(\mathcal{TP}))$
Determinization

Determinization is crucial to set \textbf{Fail} verdicts, i.e. detect non-conformant traces in \(\text{Traces}(\mathcal{P}).(\Sigma ! \cup \mathbb{R}^+) \setminus \text{Traces}(\mathcal{P}) \) but TAIOs (like TAs) cannot be determinized in general (some languages of TAIOs cannot be recognized by DTAIOs).

- Restriction to determinizable classes is limited
- Approximate determinization for any TAIO, adapted to \textbf{tioco}:
 - What approximation is allowed?
 - Remember: io-abstraction preserves soundness
 - How to compute an io-abstract determinization of a TAIO?
 - fix ressources (Y,N), simulate X by Y,
 - try to be exact when possible,
 - when necessary, over-approx. outputs/delays, under-approx. inputs
 \[\text{[BSJK11]}: \text{a game approach to determinization} \]
Approximate determinization: general scheme

\[\text{TAIO } \mathcal{P}(X, M) \]
\[\text{Resources } (Y, N) \]
\[\text{Game } \mathcal{G}_\mathcal{P}(Y, N) \]
\[\text{Strategy } \pi \]
\[\text{DTAIO } \mathcal{D}\mathcal{P}(Y, N) \]

- If π wins then $\text{Traces}(\mathcal{P}) = \text{Traces}(\mathcal{D}\mathcal{P})$
- Otherwise $\mathcal{P} \preceq \mathcal{D}\mathcal{P}$

Corollary: approximate determinization preserves soundness

If a test suite $\mathcal{T}S$ is **sound** for $\mathcal{D}\mathcal{P}$, it is **sound** for \mathcal{P}, thus for \mathcal{A}.
Game principles

Finite turn-based safety game between **Spoiler** and **Determinizator**.

- Config. of game = state estimate \((\tau\text{-closure} + \text{subset construction} + \text{clock relations encoding} X \text{ by } Y)\).
- **Spoiler** chooses an action \(a\) and when to fire it (region \(r\) on \(Y\)).
- **Determinizator** chooses clocks \(Y' \subseteq Y\) to reset.
- Avoid unsafe states (possible strict io-abstraction).
Game principles

Finite turn-based safety game between **Spoiler** and **Determinizator**.

- Config. of game = state estimate (τ-closure + subset construction + clock relations encoding X by Y).
- **Spoiler** chooses an action a and when to fire it (region r on Y).
- **Determinizator** chooses clocks $Y' \subseteq Y$ to reset.
- Avoid unsafe states (possible strict io-abstraction).

Properties of the game

- Strategy of Determinizator \rightarrow deterministic io-abstraction.
- **Winning** strategy of Determinizator \rightarrow deterministic equivalent. (with sufficient ressources, winning strategies exist for all known determinizable classes: event-clock, int. reset, non-Zeno TAs).

Complexity: doubly exponential in $|X \cup Y|$, exponential in $|L^P|$.
Game principles

Finite turn-based safety game between **Spoiler** and **Determinizator**.

- Config. of game = state estimate (τ-closure + subset construction + clock relations encoding X by Y).
- **Spoiler** chooses an action a and when to fire it (region r on Y)
- **Determinizator** chooses clocks $Y' \subseteq Y$ to reset
- Avoid unsafe states (possible strict io-abstraction).

Properties of the game

- Strategy of Determinizator \rightarrow deterministic io-abstraction.
- **Winning** strategy of Determinizator \rightarrow deterministic equivalent. (with sufficient resources, winning strategies exist for all known determinizable classes: event-clock, int. reset, non-Zeno TAs).

Complexity: doubly exponential in $|X \cup Y|$, exponential in $|L^P|$.
Game principles

Finite turn-based safety game between **Spoiler** and **Determinizator**.

- Config. of game = state estimate (τ-closure + subset construction + clock relations encoding X by Y).
- **Spoiler** chooses an action a and when to fire it (region r on Y)
- **Determinizator** chooses clocks $Y' \subseteq Y$ to reset
- Avoid unsafe states (possible strict io-abstraction).

Properties of the game

- Strategy of Determinizator \rightarrow deterministic io-abstraction.
- **Winning** strategy of Determinizator \rightarrow deterministic equivalent. (with sufficient ressources, winning strategies exist for all known determinizable classes: event-clock, int. reset, non-Zeno TAs).

Complexity: doubly exponential in $|X \cup Y|$, exponential in $|L^P|$.
The game $G_P(Y, N)$ built from P

$\text{Accept}^D = \{ \ell \in L^D \text{ containing a config. with location in } \text{Accept}^P \}$.

Exact determinization $\Rightarrow \text{Traces}(D^P) = \text{Traces}(P) \land \text{Traces}_{\text{Accept}^D}(D^P) = \text{Traces}_{\text{Accept}^P}(P)$
From a strategy to a DTAIO \mathcal{DP}

For a strategy π of the game, build a TAIO \mathcal{DP}.
Generating $\mathcal{T}C$ from \mathcal{DP}: principle

Essentially consists in identifying verdicts in \mathcal{DP}:

- **Fail**: detect non-conformant traces in $\text{Traces}(\mathcal{DP}).(\Sigma_! \cup \mathbb{R}^+) \setminus \text{Traces}(\mathcal{DP})$, i.e.:
 - unspecified delays = violation of invariants, incorporated in Fail
 Warning: invariants in \mathcal{DP} transfered to guards in $\mathcal{T}C$
 - unspecified outputs by complementation to a new location ℓ_{Fail}

- **Pass**: captured by $\text{Accept}^{\mathcal{DP}}$ locations

- **Inconc**: states not co-reachable from Pass. Avoid them when controllable.

+ Inversion of input/output alphabets
Generating $\mathcal{T}C$ from \mathcal{DP}: formalization

$\mathcal{T}C = (L^\mathcal{DP} \sqcup \{\ell_{\text{Fail}}\}, \ell_0^\mathcal{DP}, \Sigma^A_1, \Sigma^A_? , Y, N, I^\mathcal{T}C = \text{true}, E^\mathcal{DP}_I \cup E_{\ell_{\text{Fail}}})$ such that:

$\begin{align*}
\text{▶ } E^\mathcal{DP}_I &= \{(\ell, g \land I^\mathcal{DP}(\ell), a, X', \ell') \mid (\ell, g, a, X', \ell') \in E^\mathcal{DP}\} \text{ and } \\
\text{▶ } E_{\ell_{\text{Fail}}} &= \{\ell, \neg \bigvee_{(\ell, g, a, X', \ell') \in E^\mathcal{DP}} g, a, X^\mathcal{T}C_{\ell_{\text{Fail}}} \mid \ell \in L^\mathcal{DP}, a \in \Sigma^A_1\}.
\end{align*}$
Generating $\mathcal{T}C$ from \mathcal{DP}: formalization

$$\mathcal{T}C = (L^{\mathcal{DP}} \sqcup \{\ell_{\text{Fail}}\}, \ell_0^{\mathcal{DP}}, \Sigma^A, \Sigma^?, Y, N, I^{\mathcal{T}C} = \text{true}, E^{\mathcal{DP}}_I \cup E_{\ell_{\text{Fail}}})$$ such that:

- $E^{\mathcal{DP}}_I = \{(\ell, g \land I^{\mathcal{DP}}(\ell), a, X', \ell') \mid (\ell, g, a, X', \ell') \in E^{\mathcal{DP}}\}$ and
- $E_{\ell_{\text{Fail}}} = \{(\ell, \neg \bigvee (\ell, g, a, X', \ell') \in E^{\mathcal{DP}} g, a, X_{\mathcal{T}C}^{\ell_{\text{Fail}}}, \ell_{\text{Fail}}) \mid \ell \in L^{\mathcal{DP}}, a \in \Sigma^A\}$.

Verdicts:

- $\text{Fail} = \{\ell_{\text{Fail}}\} \times R^Y \cup \bigcup_{\ell \in L^{\mathcal{DP}}} \{\ell\}, \neg I^{\mathcal{DP}}(\ell)$
- $\text{Pass} = \bigcup_{\ell \in \text{Accept}^{\mathcal{DP}}} (\{\ell\} \times I^{\mathcal{DP}}(\ell))$
- $\text{None} = \text{coreach}(\mathcal{DP}, \text{Pass}) \setminus \text{Pass}$
- $\text{Inconc} = S^{\mathcal{DP}} \setminus (\text{Pass} \cup \text{Fail} \cup \text{Inconc})$

$\text{coreach}(\mathcal{DP}, \text{Pass})$ computed symbolically using regions/zones.

Complexity: $\mathcal{O}(|L^{\mathcal{DP}}|, |Y|, N)$
Selection of \mathcal{TC}

\[\text{Fail} = \{ \ell_{\text{Fail}} \} \times \mathbb{R}_+ \cup \{ \ell''_3, \ell''_4 \} \times (0, \infty) \cup \{ \ell''_2 \} \times (1, \infty) \]
Selection of $\mathcal{T}C$

$$\ell''_0 \quad \ell''_1 \quad \ell''_2 \quad \ell''_3 \quad \ell''_4$$

Pass = $\{\text{Accept}_1, \text{Accept}_2\} \times \mathbb{R}_+$

Inconc = $\ell''_0 \times [2, \infty) \cup \ell''_1 \times (0, \infty) \cup \ell''_2 \times (0, 1] \cup \ell''_{**} \times \mathbb{R}$

Fail = $\ell_{\text{Fail}} \times \mathbb{R}_+ \cup \ell''_3, \ell''_4 \times (0, \infty) \cup \ell''_2 \times (1, \infty)$

Urgency “preserved” by incorporating the negation of invariants into Fail.
Selection of \mathcal{T}

$$
\begin{align*}
\ell_0'' & \rightarrow \ell_1' \quad y = 0, b\,?, \{y\} \\
\ell_0'' & \rightarrow \ell_3' \quad y = 1, a\,!, \{y\} \\
\ell_0'' & \rightarrow \ell_4' \quad y = 0, b\,?, \{y\}
\end{align*}
$$

Pass = $\{\text{Accept}_1, \text{Accept}_2\} \times \mathbb{R}_+$

Inconc = $\{\ell_0''\} \times [2, \infty) \cup \{\ell_1''\} \times (0, \infty) \cup \{\ell_2''\} \times (0, 1]$

Fail = $\{\ell_{\text{Fail}}\} \times \mathbb{R}_+ \cup \{\ell_3'', \ell_4''\} \times (0, \infty) \cup \{\ell_2''\} \times (1, \infty)$

Urgency “preserved” by incorporating the negation of invariants into **Fail**.

Last “control” step: avoid **Inconc** states when possible:

- guard intersected with **None** in the source location
 and with **None** \cup **Pass** in the target location for outputs.
Test case properties

Theorem

Any generated test case TC is **sound** for A.

If DP is **exact** wrt. P, TC is **strict** for A, and **precise** for A and TP.

Theorem

If A is **repeatedly observable** (from any state, a future observation) and DP is **exact**, the set of all test cases that can be generated is **exhaustive**.

If DP is not exact: possibly missed **Fail**, unexpected **Pass**.
Conclusion

- off-line test generation algorithm for all (non-deterministic) TAIOs, thanks to approximate determinization,
- precise selection of test cases by test purposes, using symbolic co-reachability analysis
- generated test cases are TAIOs, i.e. complex reactive systems

Other approaches:
- test generation usualy on-line (TorX like algo.)
- off-line test selection often limited to determini(stic/zable) TAs
 - [KT09] less precise, no preservation of urgency,
 - [KCL98], [END01]: less expressive test purposes
 - [DLLN09]: test selection using games (more restrictive).
Some challenges in MBT

- Combine time and data with non-determinism. Approximate determinization?
- Asynchronous testing.
- Modular test generation for composed systems.
- Semantic coverage / structural coverage.
Bibliography

[BJSK12], [BSJK15]: journal versions in LMCS 8(4) and FMSD 46(1).

