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Unifying frameworks  

 

 

Cyber -Physical Systems  

  Anything that involves computer -environment RT interaction  ! 
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Cyber -Physical Systems  

ǒ Complex structure  

ï High heterogeneity (functionality, requirements, resourcesé) 

ï Variable composition (versions, modes, connectionsé) 

ï ... 

ǒ Need to be robust with respect to 

ï Topology changes (reconfigurations, node crashes, é) 

ï Changes in available resources  (energy, bandwidthé) 

ï Denial -of -service  (malfunctioning nodes, malicious actionsé) 

ï Intrusion  (unauthorized accesses or actionsé) 

ï ... 

    How to design these systems ??  
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Physical world 

Cyber -Physical Systems: internals  

ǒ The platform determines the degree of 

ï accuracy  in the knowledge of the physical world state 

ï control  over the physical world 

CPS application 
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Real-time capable platforms  

ǒ Amenable to modeling of timing behavior  

ï Bounded and computable delays  

Ą  real -time guarantees  

ǒ While supporting multiple and varying  

ï applications, users, operating conditions, ... 

ǒ And being resource efficient  

ï bandwidth, energy 
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Resource reservation paradigm  

ǒ Define the application non -functional requirements  

ï Performance & time behavior  Ą BW, rate, latency, jitter 

ï Possibly with multiple levels of service  

ǒ Define how much of each resource is needed  

ï To cover the requirements (demand ) 

ï For each service level 

ï Reducing the application to an interface  (or a set) 
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Resource reservation paradigm  

ǒ Resource Manager needed 

ï Provide reservations (partitions...) 

ǒ that match demand  

ï Keep track of accepted reservations 

ǒ to respect resource capacity  
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Networks for CPS  

ǒ Are current networks adequate?  

ï Real-Time communication technologies 

ǒ well developed for (static) DES  

ǒ focused on latency and isolation  

ï General purpose communication technlologies 

ǒ well developed for large networks (Cloud / Internet)  

ǒ essentially best -effort  (particularly in access networks) 

ǒ focused on openness , scalability and throughput  
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RT- enabled  
cloud 

A Network Challenge for CPS  

The real -time enabled cloud  
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Our approaches  

ǒ Centralized resource manager  

ï The Flexible Time -Triggered  paradigm 

ǒ Isochronous / asynchronous traffic 

ǒ Any on -line traffic scheduling  supported  

ï Building on top of Linux -TC  

ǒ Asynchronous traffic, only 

ǒ Distributed resource manager  

ï The Reconfigurable and Adaptive TDMA  protocol 

ǒ Used in wireless networks on top of CSMA-CA 

ǒ Isochronous / asynchronous traffic 
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Flexible Time-Triggered architecture 



ÅConcentration of operational information  

ï Master node  with 

ÅSystem Requirements Data Base  

ÅOnline System Scheduler  

ï Consistent and prompt  

channels management 

Å Emanating triggers to the system  

Å Isochronous / asynchronous traffic 

Å Any scheduling policy 
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The Flexible Time -Triggered paradigm  
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FTT-SE:  FTT applied to Switched  Ethernet  
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FTT-SE traffic scheduling  

V Integrated scheduler for all traffic types  
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Sync:  SRT = {SMi: SMi(Ci, Di, Ti, Oi , Pr i, Si, {R1
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i}), i=1..NS} 
 

Async:    ART = {AMi: AM i(Ci, Di, mit i, Pr i, Si, {R1
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FTT-SE traffic scheduling  

ǒ Basic scheduling model:  

ï Schedule within partitions  with strict time bounds  

ï Use inserted idle -time  (X) 

ǒ There is no blocking  

ǒ Any analysis for preemptive scheduling can be used  

with inflated transmission times (Cô) 

14 
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FTT-SE traffic scheduling  

ǒ Utilization bounds for on -line BW management  

ï To be applied to each link separately  

ï Interference in the uplinks appears at the downlinks as release jitter (J) 
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FTT-SE traffic scheduling  
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ǒ Response -time analysis  

ï request bound funtion (rbf ):  Max. submitted load & interference 

ïsupply bound function (sbf ):  Min. effective network capacity 
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Multi -hop Delay Analysis  

ǒ request  bound  function  

 

 

 

ǒ supply bound function  
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Traffic Delay Analysis  

ǒ Shared  Link Delay 
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Improved Response -Time Analysis  

ǒ Revisiting the Shared Link Delay  

G contains an upper bound 

on the number of switching 

delays from each message 

that contribute to the 

Shared Link Delay at time t 

We select the first z(t) 

elements (which are the 

largest) for each t 
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Traffic Delay Analysis  

ǒ Remote  Link Delay 

Scheduling of m1 can push m3 via m2 , 

despite m1 and m3 not sharing links. 
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Assessing the Analysis  

SW1 M2 
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SW2 M2 
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Å 10 switches 

Å 30 nodes 

Å EC = 10ms 

Å C = 100Mbps 

Å Sync local win = 1.5ms 

Å Sync global win = 2ms 

Å Async local win = 1.5ms 

Å Async global win = 4.4ms 

Å 4 clusters each 1.1ms 

 

Å 90 messages with random parameters 

Å Worst-case scenario for 4 messages (one per each type) 

Å Long route, different activation of interfering messages, priorities 
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Assessing the Analysis  

m1: global sync  m3: local sync 

m2: global async m4: local async 

    Simulated for 10,000 ECs 
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Comparing the multi -hop approaches  
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From FTT-SE to HaRTES 

Master 

Switch 

Slave 1 Slave 2 

HaRTES 

S1 S2 S3 

FTT-SE 

ï Master integrated in the switch 

ï Asynchronous & NRT traffic shaped  by the switch 

ï Allows direct connection of non -FTT nodes 
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Display node  
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Channel  control in FTT -SE 

 

PC

GatewayGateway

IP camera

Channel Control 

node

Master

Dynamically reconfigurable  

virtual channel with definable 

temporal properties 

(x bytes every y seconds) 

FTT-SE network 


