
Overview The Multi-/Many-core era SchedMCore Converter SchedMCore Runner

A SchedMCore primer

Eric NOULARD - Eric.Noulard@onera.fr
Claire PAGETTI - Claire.Pagetti@onera.fr

http://www.onera.fr/dtim

ETR’2015 in Rennes

August, 26th 2015

http://sites.onera.fr/schedmcore

https://forge.onera.fr/projects/schedmcore

1 / 42
A SchedMCore primer

N

Eric.Noulard@onera.fr
Claire.Pagetti@onera.fr
http://www.onera.fr/dtim
http://sites.onera.fr/schedmcore
https://forge.onera.fr/projects/schedmcore

Overview The Multi-/Many-core era SchedMCore Converter SchedMCore Runner

Plan

1 Overview

2 The Multi-/Many-core era

3 SchedMCore Converter

4 SchedMCore Runner

2 / 42
A SchedMCore primer

N

O
verview

The
M

ulti-/M
any-core

era
SchedM

Core
Converter

SchedM
Core

Runner

SchedMCore overall framework

node0 node1 noden. . .

Prelude specification

compilation

Dependent tasks set
〈S,R, C〉

Schedulability analysis
using
SchedMCore librairies

- Fixed Priority
- gEDF
- gLLF
- LLREF

Off-line parameters
generation

- Valid priority assignment
- Off-line scheduling

Precise-time execution or simulation
on multi-core architecture

Prelude
Other
design

methods

Textual
tasks set

description

SchedMCore Converter

SchedMCore Runner

D
esign

Analysis
Execution

3
/42

A
SchedM

Core
prim

er
N

Overview The Multi-/Many-core era SchedMCore Converter SchedMCore Runner

Contributors

ONERA
Eric Noulard
Claire Pagetti
Wolfgang Puffistch (former Post-Doc)
Luca Santinelli

LIFL
Julien Forget

ISAE
Alexandre Hamez

Former Students
Alessandra Melani (Intern)
Julie Baro (Intern)
Adrien Charles (Intern)
Mikel Cordovilla (PhD)

4 / 42
A SchedMCore primer

N

Overview The Multi-/Many-core era SchedMCore Converter SchedMCore Runner

Plan

1 Overview

2 The Multi-/Many-core era

3 SchedMCore Converter

4 SchedMCore Runner

5 / 42
A SchedMCore primer

N

Overview The Multi-/Many-core era SchedMCore Converter SchedMCore Runner

So many thanks to many contributors

thanks to Marc Boyer for allowing me to borrow many slides,
thanks to Pierre-Löıc Garoche and Xavier Thirioux for being polite when I scream
about Lustre Compiler,
thanks to many early SchedMCore users who contributed to its development,
thanks to many co-coworkers for many fruitful discussions,
thanks to many coffee breaks,
thanks to many lawyers who did not think about
trademarking/copyrighting/whatevering the word “many”

This presentation could not have been made without them...

6 / 42
A SchedMCore primer

N

Overview The Multi-/Many-core era SchedMCore Converter SchedMCore Runner

Multi-/Many- core are there already

© COPYRIGHT 2015 ISSCC—DO NOT REPRODUCE WITHOUT PERMISSION
96

High-Performance Digital – 2015 Trends

Subcommittee Chair: Stefan Rusu, Intel, Santa Clara, CA

The relentless march of process technology brings more integration and energy-efficient performance to mainframes, enterprise and
cloud servers. ISSCC 2015 features IBM’s high-frequency 8-core, 16-thread System z mainframe processor in 22nm SOI with 64MB
of eDRAM L3 cache and 4MB/core eDRAM L2 cache. The SPARC M7 processor from Oracle implements 32 S4 cores, a 1.6TB/s
bandwidth 64MB L3 Cache and a 0.5TB/s data bandwidth on-chip network (OCN) to deliver more than 3.0x throughput compared
to its predecessor. 280 SerDes lanes support up to 18Gb/s line rate and 1TB/s total bandwidth. Intel’s next generation Xeon
processor supports 18 dual-threaded 64b Haswell cores, 45MB L3 cache, 4 DDR4-2133MHz memory channels, 40 8GT/s PCIe
lanes, and 60 9.6GT/s QPI lanes. It has 5.56B transistors in Intel’s 22nm tri-gate HKMG CMOS and achieves a 33% performance
boost over previous generations.

The chip complexity chart below shows the trend in transistor integration on a single chip over the past two decades. While the 1
billion transistor integration threshold was achieved some years ago, we now commonly see processors incorporating more than 5B
transistors on a die.

© COPYRIGHT 2015 ISSCC—DO NOT REPRODUCE WITHOUT PERMISSION
97

The maximum core clock frequency seems to have saturated in the range of 5-6GHz, primarily limited by thermal considerations.
The nominal operating frequency of the power-limited processors this year is around 3.5GHz. Core counts per die are typically
above 10, with increases appearing to slow in recent years. Cache size growth continues, with modern chips incorporating tens of
MB on-die..

© COPYRIGHT 2015 ISSCC—DO NOT REPRODUCE WITHOUT PERMISSION
97

The maximum core clock frequency seems to have saturated in the range of 5-6GHz, primarily limited by thermal considerations.
The nominal operating frequency of the power-limited processors this year is around 3.5GHz. Core counts per die are typically
above 10, with increases appearing to slow in recent years. Cache size growth continues, with modern chips incorporating tens of
MB on-die..

© COPYRIGHT 2015 ISSCC—DO NOT REPRODUCE WITHOUT PERMISSION
98

The trend towards digital phase-locked loops (PLL) and delay locked loops (DLL) to better exploit nanometer feature size scaling,
and reduce power and area continues. Through use of highly innovative architectural and circuit design techniques, the features of
these digital PLLs and DLLs have improved significantly over the recent past. Another new trend evident this year is towards fully
digital PLLs being synthesizable and operated with non-LC oscillators. The diagram below shows the jitter performance vs. energy
cost for PLLs and multiplying DLLs (MDLL).

see http://isscc.org/doc/2014/2014_Trends.pdf

7 / 42
A SchedMCore primer

N

http://isscc.org/doc/2014/2014_Trends.pdf

Overview The Multi-/Many-core era SchedMCore Converter SchedMCore Runner

Cache memory

More cores, and more cache
cache consumes few energy
cache is efficient

But...
how to ensure cache coherency with 32 cores ?
why ?
local cache or local memory ?
implicit or explicit communications ?

message passing vs shared memory

an old/new programming way

8 / 42
A SchedMCore primer

N

Overview The Multi-/Many-core era SchedMCore Converter SchedMCore Runner

From bus to NoCA Survey of Research and Practices of Network-on-Chip 5

Fig. 3. Examples of communication structures in Systems-on-Chip. a) traditional bus-based communication,
b) dedicated point-to-point links, c) a chip area network.

and design automation techniques and which make for seamless iterations across
all abstraction levels. Pertaining to this, the complex, dynamic interdependency of
data streams—arising when using a shared media for data traffic—threatens to foil
the efforts of obtaining minimal interdependence between IP cores. Without special
quality-of-service (QoS) support, the performance of data communication may become
unwarrantly arbitrary [Goossens et al. 2005].

To ensure the effective exploitation of technology scaling, intelligent use of the
available chip design resources is necessary at the physical as well as at the logical
design level. The means to achieve this are through the development of effective and
structured design methods and ESL tools.

As shown, the major driving factors for the development of global communication
schemes are the ever increasing density of on-chip resources and the drive to utilize
these resources with a minimum of effort as well as the need to counteract the physical
effects of DSM technologies. The trend is towards a subdivision of processing resources
into manageable pieces. This helps reduce design cycle time since the entire chip design
process can be divided into minimally interdependent subproblems. This also allows
the use of modular verification methodologies, that is, verification at a low abstraction
level of cores (and communication network) individually and at a high abstraction level
of the system as a whole. Working at a high abstraction level allows a great degree
of freedom from lower level issues. It also tends towards a differentiation of local and
global communication. As intercore communication is becoming the performance bot-
tleneck in many multicore applications, the shift in design focus is from a traditional
processing-centric to a communication-centric one. One top-level aspect of this involves
the possibility to save on global communication resources at the application level by in-
troducing communication aware optimization algorithms in compilers [Guo et al. 2000].
System-level effects of technology scaling are further discussed in Catthoor et al. [2004].

A standardized global communication scheme, together with standard communica-
tion sockets for IP cores, would make Lego brick-like plug-and-play design styles pos-
sible, allowing good use of the available resources and fast product design cycles.

1.2. NoC in SoC

Figure 3 shows some examples of basic communication structures in a sample SoC,
for example, a mobile phone. Since the introduction of the SoC concept in the 90s,
the solutions for SoC communication structures have generally been characterized by
custom designed ad hoc mixes of buses and point-to-point links [Lahiri et al. 2001]. The

ACM Computing Surveys, Vol. 38, March 2006.

Bus : shared resource
Point-to-point : does not scale
NoC :

set of shared resources
allow parallel communications

9 / 42
A SchedMCore primer

N

Overview The Multi-/Many-core era SchedMCore Converter SchedMCore Runner

A common vocabulary8 T. Bjerregaard and S. Mahadevan

Fig. 4. Topological illustration of a 4-by-4 grid structured NoC, in-
dicating the fundamental components.

which the NoC contains the following fundamental components.

—Network adapters implement the interface by which cores (IP blocks) connect to the
NoC. Their function is to decouple computation (the cores) from communication (the
network).

—Routing nodes route the data according to chosen protocols. They implement the
routing strategy.

—Links connect the nodes, providing the raw bandwidth. They may consist of one or
more logical or physical channels.

Figure 4 covers only the topological aspects of the NoC. The NoC in the figure could
thus employ packet or circuit switching or something entirely different and be imple-
mented using asynchronous, synchronous, or other logic. In Section 3, we will go into
details of specific issues with an impact on the network performance.

2.2. Architectural Issues

The diversity of communication in the network is affected by architectural issues such
as system composition and clustering. These are general properties of SoC but, since
they have direct influence on the design of the system-level communication infrastruc-
ture, we find it worthwhile to go through them here.

Figure 5 illustrates how system composition can be categorized along the axes of
homogenity and granularity of system cores. The figure also clarifies a basic difference
between NoC and networks for more traditional parallel computers; the latter have gen-
erally been homogeneous and coarse grained, whereas NoC-based systems implement
a much higher degree of variety in composition and in traffic diversity.

Clustering deals with the localization of portions of the system. Such localization
may be logical or physical. Logical clustering can be a valuable programming tool. It
can be supported by the implementation of hardware primitives in the network, for
example, flexible addressing schemes or virtual connections. Physical clustering, based
on preexisting knowledge of traffic patterns in the system, can be used to minimize
global communication, thereby minimizing the total cost of communicating, power and
performancewise.

ACM Computing Surveys, Vol. 38, March 2006.

Core/tile : could be also IO/RAM
write/read messages

Network adapter
fragment/reassemble messages into packets
send/receive packets
flow control

Routing node : commutation element
send/receive flits (≈ 64bits)
also flow control

10 / 42
A SchedMCore primer

N

Overview The Multi-/Many-core era SchedMCore Converter SchedMCore Runner

Routing

Routing :

XY : follows the row first, then moves along the column
Note : reverse communication uses another path
Source routing : source set the path in the header
Adaptative :

route computed “on the fly”
minimize link/router load
research only ?

NoC brings network topics
The NoC on many-core brings the “usual” network issue : contention, for-
warding policies (store & forward, wormhole, virtual circuit. . .), this is the
work of network expert.

11 / 42
A SchedMCore primer

N

Overview The Multi-/Many-core era SchedMCore Converter SchedMCore Runner

Routing

Routing :
XY : follows the row first, then moves along the column
Note : reverse communication uses another path

Source routing : source set the path in the header
Adaptative :

route computed “on the fly”
minimize link/router load
research only ?

NoC brings network topics
The NoC on many-core brings the “usual” network issue : contention, for-
warding policies (store & forward, wormhole, virtual circuit. . .), this is the
work of network expert.

11 / 42
A SchedMCore primer

N

Overview The Multi-/Many-core era SchedMCore Converter SchedMCore Runner

Routing

Routing :
XY : follows the row first, then moves along the column
Note : reverse communication uses another path
Source routing : source set the path in the header

Adaptative :
route computed “on the fly”
minimize link/router load
research only ?

NoC brings network topics
The NoC on many-core brings the “usual” network issue : contention, for-
warding policies (store & forward, wormhole, virtual circuit. . .), this is the
work of network expert.

11 / 42
A SchedMCore primer

N

Overview The Multi-/Many-core era SchedMCore Converter SchedMCore Runner

Routing

Routing :
XY : follows the row first, then moves along the column
Note : reverse communication uses another path
Source routing : source set the path in the header
Adaptative :

route computed “on the fly”
minimize link/router load
research only ?

NoC brings network topics
The NoC on many-core brings the “usual” network issue : contention, for-
warding policies (store & forward, wormhole, virtual circuit. . .), this is the
work of network expert.

11 / 42
A SchedMCore primer

N

Overview The Multi-/Many-core era SchedMCore Converter SchedMCore Runner

Tile-based solutions

Initial architecture : MIT, 2007
Tile :

local multi-core
DRAM, I/O...

NoC between tiles
Hierarchical design
⇒ multi-core interferences + NoC interferences

12 / 42
A SchedMCore primer

N

Overview The Multi-/Many-core era SchedMCore Converter SchedMCore Runner

Example of Tiled architectures

Intel SCC research processor
experimental processor
24 tiles
2 cores per tile
2Tb/s bisection bandwidth
explicit message passing (but virtual global addressing)

Tilera Gx and now Mx processor http://www.tilera.com/
COTS solution
from 9 up 100 tiles, 1 core per tile.
3-level coherent cache architecture
High level programming models (Linux SMP POSIX thread, ZOL, Baremetal)

Kalray MPPA http://www.kalray.eu/kalray/products

COTS solution
16 tiles of 16 cores leading to 256 core chip
Shared memory within the 16-core Tile and explicit message passing among tiles.
High level programming models (Restricted POSIX, Baremetal, OpenCL)

13 / 42
A SchedMCore primer

N

http://www.tilera.com/
http://www.kalray.eu/kalray/products

Overview The Multi-/Many-core era SchedMCore Converter SchedMCore Runner

Multi-Many-Cores

Today : Multi-cores Tomorrow : Many-cores
A few complex cores Lots of simple cores
Shared on-chip bus On-chip network
Shared memory Message passing
Mostly well understood How to use efficiently/safely ?
Common clock Clock synchronization
Communication immediate Communication takes time

The sliced execution model, see[2]

shared memory

1 2 3 4
 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

MC

MC

MC

MC

FPGA

14 / 42
A SchedMCore primer

N

Overview The Multi-/Many-core era SchedMCore Converter SchedMCore Runner

Multi-Many-Cores

Today : Multi-cores Tomorrow : Many-cores
A few complex cores Lots of simple cores
Shared on-chip bus On-chip network
Shared memory Message passing
Mostly well understood How to use efficiently/safely ?
Common clock Clock synchronization
Communication immediate Communication takes time

The sliced execution model, see[2]

shared memory

1 2 3 4
 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

MC

MC

MC

MC

FPGA

14 / 42
A SchedMCore primer

N

Overview The Multi-/Many-core era SchedMCore Converter SchedMCore Runner

Multi-Many-Cores

Today : Multi-cores Tomorrow : Many-cores
A few complex cores Lots of simple cores
Shared on-chip bus On-chip network
Shared memory Message passing
Mostly well understood How to use efficiently/safely ?
Common clock Clock synchronization
Communication immediate Communication takes time

The sliced execution model, see[2]

shared memory

1 2 3 4
 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

MC

MC

MC

MC

FPGA

14 / 42
A SchedMCore primer

N

Overview The Multi-/Many-core era SchedMCore Converter SchedMCore Runner

Multi-Many-Cores

Today : Multi-cores Tomorrow : Many-cores
A few complex cores Lots of simple cores
Shared on-chip bus On-chip network
Shared memory Message passing
Mostly well understood How to use efficiently/safely ?
Common clock Clock synchronization
Communication immediate Communication takes time

The sliced execution model, see[2]

shared memory

1 2 3 4
 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

MC

MC

MC

MC

FPGA

14 / 42
A SchedMCore primer

N

Overview The Multi-/Many-core era SchedMCore Converter SchedMCore Runner

Multi-Many-Cores

Today : Multi-cores Tomorrow : Many-cores
A few complex cores Lots of simple cores
Shared on-chip bus On-chip network
Shared memory Message passing
Mostly well understood How to use efficiently/safely ?
Common clock Clock synchronization
Communication immediate Communication takes time

The sliced execution model, see[2]

shared memory

1 2 3 4
 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

MC

MC

MC

MC

FPGA

14 / 42
A SchedMCore primer

N

Overview The Multi-/Many-core era SchedMCore Converter SchedMCore Runner

Multi-Many-Cores

Today : Multi-cores Tomorrow : Many-cores
A few complex cores Lots of simple cores
Shared on-chip bus On-chip network
Shared memory Message passing
Mostly well understood How to use efficiently/safely ?
Common clock Clock synchronization
Communication immediate Communication takes time

The sliced execution model, see[2]

shared memory

1 2 3 4
 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

MC

MC

MC

MC

FPGA

14 / 42
A SchedMCore primer

N

Overview The Multi-/Many-core era SchedMCore Converter SchedMCore Runner

Multi-Many-Cores

Today : Multi-cores Tomorrow : Many-cores
A few complex cores Lots of simple cores
Shared on-chip bus On-chip network
Shared memory Message passing
Mostly well understood How to use efficiently/safely ?
Common clock Clock synchronization
Communication immediate Communication takes time

The sliced execution model, see[2]

shared memory

1 2 3 4
 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

MC

MC

MC

MC

FPGA

14 / 42
A SchedMCore primer

N

O
verview

The
M

ulti-/M
any-core

era
SchedM

Core
Converter

SchedM
Core

Runner

SchedMCore overall framework

node0 node1 noden. . .

Prelude specification

compilation

Dependent tasks set
〈S,R, C〉

Schedulability analysis
using
SchedMCore librairies

- Fixed Priority
- gEDF
- gLLF
- LLREF

Off-line parameters
generation

- Valid priority assignment
- Off-line scheduling

Precise-time execution or simulation
on multi-core architecture

Prelude
Other
design

methods

Textual
tasks set

description

SchedMCore Converter

SchedMCore Runner

D
esign

Analysis
Execution

15
/42

A
SchedM

Core
prim

er
N

O
verview

The
M

ulti-/M
any-core

era
SchedM

Core
Converter

SchedM
Core

Runner

Lustre/Prelude/SchedMCore

Functionnal
Requirements

Safety
Constraints

Real-Time
Constraints

Lustre Prelude

Lustre description Prelude
specification

Lustre Compiler Prelude compiler

node.c/h
wrapper.c/h
assembly.c/h in-
cludes.c/h

Assembly.so/elf

SchedMCore Runner

Precise-time execution or simulation
on multi-core architecture

Design

Automatic Ge-
neration

Simulation
Execution

16
/42

A
SchedM

Core
prim

er
N

Overview The Multi-/Many-core era SchedMCore Converter SchedMCore Runner

Plan

1 Overview

2 The Multi-/Many-core era

3 SchedMCore Converter

4 SchedMCore Runner

17 / 42
A SchedMCore primer

N

Overview The Multi-/Many-core era SchedMCore Converter SchedMCore Runner

A reference task model I

Prelude specification

compilation

Dependent tasks set
〈S,R, C〉

Prelude
Other
design

methods

Textual
tasks set

description

Extendable set of inputs
SchedMCore tools take as input a reference task model which is general
enough to be an output of possibly several system modeling tools (Prelude,
bare text file, . . .).

18 / 42
A SchedMCore primer

N

Overview The Multi-/Many-core era SchedMCore Converter SchedMCore Runner

A reference task model II
SchedMCore toolset takes as input a set of concurrent periodic and dependent
communicating tasks 〈S,R, C[,M]〉 :

S = {τj = (Tj ,Oj ,Dj ,Cj)}j=1,...n is a finite periodic task set. τ ij is the ith job of
τj ;

τ0 τ1

C C

O T T

D D

R is the precedence relation, defined as a set of repetitive job precedence patterns
C is the communication function, it tells where each task instance writes or reads its
data from (buffer or message).
M is an optional partial mapping function which may indicate task placement (on a
particular core).

19 / 42
A SchedMCore primer

N

Overview The Multi-/Many-core era SchedMCore Converter SchedMCore Runner

Multiprocessor schedulability analysis : SchedMCore
Converter

Dependent periodic task set
〈S = {τ0, . . . , τn}, R, C〉

Schedulability analysis
of SchedMCore libraries
FP, gEDF, gLLF, LLREF
Partitioned or not
Preemptive or non-preemptive

Off-line computation
- Valid (fixed) priority assignment
- Off-line schedule

Schedulability
analysis

SchedMCore Converter
A tool for the schedulability analysis of [non]-preemptive global and/or par-
titioned policies.

encoding of the schedulability analysis or the off-line computation as an
equivalent configuration automaton ;
generation of C or Uppaal [or Fiacre] programs for the exploration.

20 / 42
A SchedMCore primer

N

Overview The Multi-/Many-core era SchedMCore Converter SchedMCore Runner

Sequence of configurations

τi Ti Oi Di Ci R

τ1 10 0 10 5 τ1
(0,0)−−−→ τ2

τ2 30 0 30 10 τ2
(0,0)−−−→ τ3

τ3 60 1 60 20 τ1
(0,0)−−−→ τ3

policy : FP
with τ1 < τ2 < τ3
2 processors

time 0 1 5 10 30 61
τ1 (10, 0, 10, 5) (9, 0, 9, 4) (5, 0, 5, 0) (0, 0, 0, 0) →

(10, 0, 10, 5)
(0, 0, 0, 0) →
(10, 0, 10, 5)

(9, 0, 9, 4)

τ2 (30, 0, 30, 10) (29, 0, 29, 10) (25, 0, 25, 10) (20, 0, 20, 5) (0, 0, 0, 0) →
(30, 0, 30, 10)

(29, 0, 29, 10)

τ3 (60, 1, 60, 20) (60, 0, 60, 20) (56, 0, 56, 20) (51, 0, 51, 20) (21, 0, 21, 5) (0, 0, 0, 0) →
(60, 0, 60, 20)

5

5

10

10

15

15

20

20

25

25

30

30

35

35

40

40

45

45

50

50

55

55

60

60

τ 01

τ 02 τ
0
2 τ 03

τ 11 τ 21 τ 31 τ 41 τ 51

τ 02

τ 03

21 / 42
A SchedMCore primer

N

Overview The Multi-/Many-core era SchedMCore Converter SchedMCore Runner

Off-line (optimal) schedule

Generation of a valid schedule on a platform C made up of p processors.
Produce of a configuration automaton (available only in Uppaal) ;
Search a cycle in the sequence of configurations ;
Combinational explosion ;

T C D O
τ0 5 1 1 0
τ1 5 1 2 0
τ2 5 1 1 0
τ3 5 2 3 0
τ4 8 2 5 0
τ5 8 3 7 0
τ6 20 5 19 0 5

5

10

10

15

15

20

20

τ 00 τ 10 τ 20 τ 30

τ 01 τ 11

τ 21 τ 31

τ 02 τ 12 τ 22 τ 32

τ 03 τ 13

τ 23 τ 33

τ 04 τ 14 τ 14

τ 24τ 05 τ 15 τ 15 τ 25τ 06 τ 06

1 # The f o l l o w i n g l i n e (s) d e s c r i b e the t a sk s us ing 1 l i n e per task on each l i n e one f i n d :
2 # Task ” task name ” Per iod WCET Deadline ReleaseDate
3 Task ” tau 0” 5 1 1 0
4 Task ” tau 1” 5 1 2 0
5 Task ” tau 2” 5 1 1 0
6 Task ” tau 3” 5 2 3 0
7 Task ” tau 4” 8 2 5 0
8 Task ” tau 5” 8 3 7 0
9 Task ” tau 6” 20 5 19 0

22 / 42
A SchedMCore primer

N

Overview The Multi-/Many-core era SchedMCore Converter SchedMCore Runner

SchedMCore task file
A simple textual file [9] may be used to describe a task set. E.g., for the task set :
S = {τ0 = (0, 5, 5, 1), τ1 = (0, 5, 5, 1), τ2 = (1, 5, 5, 1), τ3 = (1, 10, 10, 1), τ4 =
(1, 10, 10, 1), τ5 = (1, 20, 20, 1)} and the associated precedence constraints
R = {(τ1, {(0, 0)}, τ0), (τ1, {(0, 0), (1, 0)}, τ3)} the file is :

1 TFF-2.0
2 # Task "Name" T C 0 (D)

3 Task "Tau0" 5 1 0 (5)

4 Task "Tau1" 5 1 0 (5)

5 Task "Tau2" 5 1 1 (5)

6 Task "Tau3" 10 1 1 (10)

7 Task "Tau4" 10 1 1 (10)

8 Task "Tau5" 20 1 1 (20)

9 # Dependency "pred" "succs" words

10 Dependency "Tau1" "Tau0" (0:0)

11 Dependency "Tau1" "Tau3" (0:0 ,1:0)

Comments are beginning with # and expand until the end of the line. A task
description begins with the Task keyword followed by the name of the task, its
period, its WCET (Worst Case Execution Time), its deadline and finally its
release date/offset. A precedence constraint begins with Dependency followed
by the name of predecessor and successor tasks and the dependency words [5]
that define this contraint. The communicatoin scheme C is not described in this
file.

23 / 42
A SchedMCore primer

N

Overview The Multi-/Many-core era SchedMCore Converter SchedMCore Runner

SchedMCore Converter command line I
The SchedMCore Converter tool transforms a task model description into a
formally analyzable model in C or Uppaal. In order to use the lsmc converter
executable, one can play with several options :

c : [int] number of processors/cores ;
m : [Uppaal |C |all] model type to generate Uppaal, C or both (all) ;
l : [string] name of the input file, if it’s a Prelude shared library ;
t : [string] name of the input file, if it’s a textual file ;
p : [FP|gEDF |gLLF |LLREF |optimalFP|optimal|all] scheduling policy ;
d : [determinist|undeterminist] deterministic or undeterministic version (only for
policy which required it and only in Uppaal).

The -h option of the lsmc converter command gives a complete description of
the options and default values.

24 / 42
A SchedMCore primer

N

Overview The Multi-/Many-core era SchedMCore Converter SchedMCore Runner

SchedMCore Converter command line II
Dependent tasks set
〈S,R, C〉

Schedulability analysis
for policy :

- Fixed Prority
- gEDF
- gLLF
- LLREF

Model/C Program
‘‘task0.c’’

‘‘task0’’

OK KO

Uppaal Model
‘‘task0.xml’’

Uppaal/ verifyta

OK KO

25 / 42
A SchedMCore primer

N

Overview The Multi-/Many-core era SchedMCore Converter SchedMCore Runner

lsmc tracer workflow

Dependent tasks set
〈S,R, C〉

1

2

3

4

SchedMCore Converter

task.txt UppaalOptimal.xml

Uppaal

trace.uppaal

SchedMCore Tracer

sequence trace.h sched dispatcher.c

GCC

sched dispatcher.so

SchedMCore Runner

26 / 42
A SchedMCore primer

N

Overview The Multi-/Many-core era SchedMCore Converter SchedMCore Runner

Plan

1 Overview

2 The Multi-/Many-core era

3 SchedMCore Converter

4 SchedMCore Runner

27 / 42
A SchedMCore primer

N

Overview The Multi-/Many-core era SchedMCore Converter SchedMCore Runner

The runner modes

Dependent tasks set
〈S,R, C〉

Mode 1
Temporal
Simulation

Mode 3
Time accurate
execution

Mode 2
Functional
and temporal
simulation

SchedMCore
Runner Execution

mode 1 and 2 are almost the same and shall be used with lsmc run−nort.
The only difference is whether if some user functional code is provided or not.
Textual task files leads to mode 1 whereas prelude library leads to mode 2.
mode 3 requires some privileges which can be checked with
lsmc checkCapabilities .

28 / 42
A SchedMCore primer

N

Overview The Multi-/Many-core era SchedMCore Converter SchedMCore Runner

The SchedMCore Runner command line
$ lsmc_run-nort -h

lsmc_run v1.2

SchedMCore runner tool from the SchedMCore toolset by ONERA

Usage: lsmc_run [-v<level>] [-t <taskfile>|-l <preludeLibFile>] -s <schedulerLibFile>

[-c <nbcore>]

The runner may be used to run a set of tasks described in a tasks file or Prelude library

-h, --help Print help and exit

-V, --version Print version and exit

-v, --verbose=STRING verbose mask (level) (default=‘0x21’)

-c, --nb-core=INT the number of processor core(s) (default=‘2’)

-s, --scheduler=STRING the scheduler to be used (default=‘edf’)

-p, --policy=STRING same as --scheduler (default=‘edf’)

-b, --basetime=INT the base period (in micro-seconds) used for

execution (default=‘1000000’)

-m, --maxtick=INT the maximum tick for execution (default=‘0’)

-B, --burn burn cycles when scheduling task set files (default=off)

-r, --runtime=INT set affinity of runtime threads to a specific core mask (default=‘1’)

-C, --coremask=INT use only cores in mask (default=‘-1’)

Mode: lsmc runner

lsmc_run [-v=[level]] -t <taskfile> -s <schedulerLibFile> [-c <nbcore>]

Run tasks specified in an lsmc task file.

Available options for this mode are:

-t, --tasks-file=STRING the file containing the tasks description (mandatory)

Mode: prelude runner

lsmc_run [-v=[level]] -l <preludeLibFile> -s <schedulerLibFile> [-c <nbcore>]

Run tasks specified in a prelude library file.

Available options for this mode are:

-l, --preludelib=STRING the prelude library containing the tasks description (mandatory)

29 / 42
A SchedMCore primer

N

Overview The Multi-/Many-core era SchedMCore Converter SchedMCore Runner

Application execution principles

Layered execution
The execution of an application on a machine equipped with an operating
system usually look this way.

τ0 τ1 τ1 τn

Real-time Applications

User
Scheduler

Scheduler

Kernel
Real-time Scheduler

Other Kernel
Services Throughput Scheduler

User
Space

Kernel
Space

Non Real-time
Applications

OS Interface

Drivers

Multi-core target

C0 C1 C2 Cm

30 / 42
A SchedMCore primer

N

Overview The Multi-/Many-core era SchedMCore Converter SchedMCore Runner

Scheduling is an OS decision

Scheduler
The scheduler is traditionally a kernel level task which makes the decision
concerning which task runs on which processors.

1 the kernel can preempt or block any user task
2 the scheduler usually implements scheduling classes, i.e. on Linux you have :

SCHED OTHER : the standard round-robin time-sharing policy
SCHED BATCH : for ”batch” style execution of processes
SCHED IDLE : for running very low priority background jobs.
SCHED FIFO : a first-in, first-out policy
SCHED RR : a round-robin policy
SCHED DEADLINE : deadline-oriented (Patch
http://www.evidence.eu.com/sched_deadline.html)

Scheduling is a kernel activity
The consequence is that when you want to introduce a new scheduling policy
you have to work in the kernel.

31 / 42
A SchedMCore primer

N

http://www.evidence.eu.com/sched_deadline.html

Overview The Multi-/Many-core era SchedMCore Converter SchedMCore Runner

Scheduling at user level

User level Scheduler
Implements scheduling in userland (not in kernel) built on top of some pre-
dictable kernel scheduler.

We assume we have a kernel scheduler with the following properties :
fixed-priority scheduler with at least 5 priority levels
preemptive scheduler

Good news
This fits with the specifications of the POSIX SCHED FIFO scheduler. see :
sched setscheduler (2) .

32 / 42
A SchedMCore primer

N

Overview The Multi-/Many-core era SchedMCore Converter SchedMCore Runner

We need more RTOS primitives

Usual RT programming requirement
Any serious real-time programming environment should cope with real-time
building blocks features

real-time preemptive scheduling : on POSIX see sched setscheduler (2)
processor affinity : on Linux see sched setaffinity (2)
interrupt isolation/affinity : on Linux see cat /proc/ interrupts

physical memory lock : on POSIX see mlockall (2)
inter-process (or thread) synchronization : on POSIX see e.g.
pthread mutex lock(P)

SchedMCore runner solution
A user level real-time scheduler which makes it easy to design and implement
new real-time policy including task dependencies as a first-class scheduling
parameter.

33 / 42
A SchedMCore primer

N

Overview The Multi-/Many-core era SchedMCore Converter SchedMCore Runner

The runner architecture

User
Function

User
Function

User
Function

User
Function

τ1 τ2 τ3 . . . τn
SchedMCore

Runner

Scheduler
Skeleton

Schedulern

Dispatcher

Scheduler1

Time
Handler

thread, synchronization, preemptive scheduling, CPU affinity

Operating System

Multi-core Architecture

C0 C1 C2 Cm

User
Space

Kernel
Space

34 / 42
A SchedMCore primer

N

Overview The Multi-/Many-core era SchedMCore Converter SchedMCore Runner

SchedMCore objectives

Main objective
Enable research experiments on multi-core/multi-processors real-time sche-
duling from the design of the application to its real-time execution.

Some secondary (but important) goals :
1 ease of use
2 modular unix way : combine SchedMCore parts or use them independently
3 extensible
4 portable
5 reusable design for real-time embedding

Reusable design
SchedMCore framework is NOT an ready-to-embbed environment however
its design should be reusable for that purpose and should not have left
implementation detail aside since we do execute the functional code.

35 / 42
A SchedMCore primer

N

Overview The Multi-/Many-core era SchedMCore Converter SchedMCore Runner

SchedMCore objectives

Main objective
Enable research experiments on multi-core/multi-processors real-time sche-
duling from the design of the application to its real-time execution.

Some secondary (but important) goals :
1 ease of use
2 modular unix way : combine SchedMCore parts or use them independently
3 extensible
4 portable
5 reusable design for real-time embedding

Reusable design
SchedMCore framework is NOT an ready-to-embbed environment however
its design should be reusable for that purpose and should not have left
implementation detail aside since we do execute the functional code.

35 / 42
A SchedMCore primer

N

Overview The Multi-/Many-core era SchedMCore Converter SchedMCore Runner

SchedMCore objectives

Main objective
Enable research experiments on multi-core/multi-processors real-time sche-
duling from the design of the application to its real-time execution.

Some secondary (but important) goals :
1 ease of use
2 modular unix way : combine SchedMCore parts or use them independently
3 extensible
4 portable
5 reusable design for real-time embedding

Reusable design
SchedMCore framework is NOT an ready-to-embbed environment however
its design should be reusable for that purpose and should not have left
implementation detail aside since we do execute the functional code.

35 / 42
A SchedMCore primer

N

Overview The Multi-/Many-core era SchedMCore Converter SchedMCore Runner

SchedMCore objectives

Main objective
Enable research experiments on multi-core/multi-processors real-time sche-
duling from the design of the application to its real-time execution.

Some secondary (but important) goals :
1 ease of use
2 modular unix way : combine SchedMCore parts or use them independently
3 extensible
4 portable
5 reusable design for real-time embedding

Reusable design
SchedMCore framework is NOT an ready-to-embbed environment however
its design should be reusable for that purpose and should not have left
implementation detail aside since we do execute the functional code.

35 / 42
A SchedMCore primer

N

Overview The Multi-/Many-core era SchedMCore Converter SchedMCore Runner

Reusable parts : Intel SCC example [11]

Design reuse
Many ideas and code from SchedMCore and
Prelude have been re-used in order to go from
design to execution on Intel SCC many-core.

User provides application, can modify mapping
Prelude and schedulability analysis
(SchedMCore Converter) are generic
Interlude and scheduler (ideas borrowed from
SchedMCore Runner) target-specific, but
portable
Library, and compilation target-specific

.c

.c

Compilation
.c

.bin

SCC

.txt

Analysis Scheduler

.plu

.c

.c

.txt

Prelude

Application

Interlude

Library

Going generic
This approach has been genericized (SCC, TI C6678, Tilera Gx36, . . .) in
[12].

36 / 42
A SchedMCore primer

N

Overview The Multi-/Many-core era SchedMCore Converter SchedMCore Runner

Read the source Luke ! !

Open Source software
SchedMCore, Prelude and Lustre compilers are open source softwares
(GPL+LGPL). Go, download, compile, patch, contribute.

SchedMCore
Home site : http://sites.onera.fr/schedmcore
Forge : https://forge.onera.fr/projects/schedmcore
Read-only login : schedmcore – passwd : schedmcore.
SVN : https://svn.onera.fr/schedmcore/trunk
Bibliography : http://sites.onera.fr/schedmcore/biblio
RTFM Please : One may find an on-going draft version of the SchedMCore manual in the
schedmcore source : schedmcore/documentation/manual.
Some technical aspects are described in LSMC technical notes in the schedmcore source :
schedmcore/documentation/technotes

Prelude
Home site : http://www.lifl.fr/~forget/prelude.html
Forge : http://forge.onera.fr/prelude
Read-only login : prelude – passwd : prelude.
Prelude SVN : https://svn.onera.fr/Prelude/Prelude/trunk

Lustre Compiler https://cavale.enseeiht.fr/redmine/projects/lustrec

37 / 42
A SchedMCore primer

N

http://sites.onera.fr/schedmcore
https://forge.onera.fr/projects/schedmcore
https://svn.onera.fr/schedmcore/trunk
http://sites.onera.fr/schedmcore/biblio
http://www.lifl.fr/~forget/prelude.html
http://forge.onera.fr/prelude
https://svn.onera.fr/Prelude/Prelude/trunk
https://cavale.enseeiht.fr/redmine/projects/lustrec

Overview The Multi-/Many-core era SchedMCore Converter SchedMCore Runner

References I

Julie Baro, Frédéric Boniol, Mikel Cordovilla, Eric Noulard, and Claire Pagetti.
Off-line (optimal) multiprocessor scheduling of dependent periodic tasks.
In Proceedings of the 27th ACM Symposium on Applied Computing (SAC’2012), March 2012.
http://www.acm.org/conferences/sac/sac2012/.

Frédéric Boniol, Hugues Cassé, Eric Noulard, and Claire Pagetti.
Deterministic execution model on cots hardware.
In Architecture of Computing Systems - ARCS2012, Lecture Notes in Computer Science. Springer, 2012.
http://www.arcs2012.tum.de/.

Mikel Cordovilla, Frédéric Boniol, Julien Forget, Eric Noulard, and Claire Pagetti.
Developing critical embedded systems on multicore architectures : the prelude-schedmcore toolset.
In 19th International Conference on Real-Time and Network Systems (RTNS 2011), Nantes, France, September 29-30 2011. IRCCyN
lab, IRCCyN lab.
http://rtns2011.irccyn.ec-nantes.fr/.

Mikel Cordovilla, Frédéric Boniol, Eric Noulard, and Claire Pagetti.
Multiprocessor schedulability analyzer.
In Proceedings of the 26th ACM Symposium of Applied Computing (SAC’2011), March 2011.
http://sites.onera.fr/schedmcore/sites/sites.onera.fr.schedmcore/files/2011_MSA_cordovilla.pdf.

Julien Forget, Emmanuel Grolleau, Claire Pagetti, and Pascal Richard.
Dynamic priority scheduling of periodic tasks with extended precedences.
In IEEE International Conference on Emerging Technology and Factory Automation (ETFA’11), Toulouse, France, 2011.
http://www.lifl.fr/~forget/docs/forget-ETFA-2011.pdf.

38 / 42
A SchedMCore primer

N

http://www.acm.org/conferences/sac/sac2012/
http://www.arcs2012.tum.de/
http://rtns2011.irccyn.ec-nantes.fr/
http://sites.onera.fr/schedmcore/sites/sites.onera.fr.schedmcore/files/2011_MSA_cordovilla.pdf
http://www.lifl.fr/~forget/docs/forget-ETFA-2011.pdf

Overview The Multi-/Many-core era SchedMCore Converter SchedMCore Runner

References II

Alessandra Melani, Eric Noulard, and Luca Santinelli.
Learning from probabilities : Dependences within real-time systems.
In Proceedings of the 18th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA’2013),
September 2013.
http://www.etfa2013.org/.

Mikel Cordovilla Mesonero.
Environnement de développement d’applications multipériodiques sur plateforme multicœur. La bôıte à outil SchedMCore.
PhD thesis, Université de Toulouse, 2012.
http://tel.archives-ouvertes.fr/tel-00720709.

Claire Pagetti, David Saussié, Romain Gratia, Eric Noulard, and Pierre Siron.
The ROSACE case study : From simulink specification to multi/many-core execution.
In Proceedings of the 20th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’2014), April 2014.
http://2014.rtas.org/.

Wolfgang Puffitsch and Alessandra Melani.
Schedmcore task file format.
SchedMCore technical note LSMC-TN002, ONERA/DTIM, 2013.

Wolfgang Puffitsch, Eric Noulard, and Claire Pagetti.
Explicit precedence constraints in safety-critical java.
In Proceedings of the 11th International Workshop on Java Technologies for Real-time and Embedded Systems (JTRES’2013),
October 2013.
http://jtres2013.atego.com/.

39 / 42
A SchedMCore primer

N

http://www.etfa2013.org/
http://tel.archives-ouvertes.fr/tel-00720709
http://2014.rtas.org/
http://jtres2013.atego.com/

Overview The Multi-/Many-core era SchedMCore Converter SchedMCore Runner

References III

Wolfgang Puffitsch, Eric Noulard, and Claire Pagetti.
Mapping a multi-rate synchronous language to a many-core processor.
In Proceedings of the 19th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’2013), April 2013.
http://www.cister.isep.ipp.pt/rtas2013/.

Wolfgang Puffitsch, Eric Noulard, and Claire Pagetti.
Off-line mapping of multi-rate dependent task sets to many-core platforms.
Real-Time Systems, 51(5) :526–565, September 2015.
http://dx.doi.org/10.1007/s11241-015-9232-1.

40 / 42
A SchedMCore primer

N

http://www.cister.isep.ipp.pt/rtas2013/
http://dx.doi.org/10.1007/s11241-015-9232-1

Overview The Multi-/Many-core era SchedMCore Converter SchedMCore Runner

Perspectives and on-going work I

More features
Enrich the scheduling analyses features : more on partitioned and non-
preemptive scheduling, connect to other real-time oriented languages like
Prelude, include a cost model for task communication, tighter connection with
other ONERA formal analysis tools, support classical MIF/MAF scheduling
analysis out-of-the box. . .

Go on real Many-core hardware
This is already done on Intel SCC see forthcoming publication [11] accepted
for RTAS’2013. Nevertheless, we should definitely go further in order to
generalize the approach for other many-core (Kalray MPPA, Tilera Gx, . . .)

41 / 42
A SchedMCore primer

N

Overview The Multi-/Many-core era SchedMCore Converter SchedMCore Runner

Perspectives and on-going work II

Help with probabilistic WCET evaluations
This is an on-going joint-work (with Luca Santinelli and Alessandra Melani).

ease dynamic user-function loading (any C function may be linked-in for RT
execution)
enhance the SchedMCore Runner with precise timing trace with LTTNG
(Linux-only) in order to collect statistical samples and provides entries for
probabilistic WCET evaluation.

Industrialize
Find industrial partners which may be interested to include our knowledge
and tools into their industrial product.

42 / 42
A SchedMCore primer

N

	Overview
	The Multi-/Many-core era
	SchedMCore Converter
	SchedMCore Runner

